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Finite size effect on the current enhancement at the tip of a
long defect in a resistor network
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Laboratoire de Physique de la Matiere Condensée, Faculté des Sciences, Parc Valrose,
06034 Nice Cedex, France

Received 6 March 1990

Abstract. The current at the tip of a long defect in a resistor network has been investigated
as a function of the defect length and of the network size. Numerical simulations show
that noticeable size effects influence the tip current. In particular, the tip current as a
function of the defect length is shown to converge very slowly toward the asymptotic square
root law previously predicted for large defects in an infinite network. The nature of the
corrections to this asymptotic law is exhibited with a finite size scaling analysis. For practical
use, an empirical formula for the tip current is proposed.

1. Introduction

The influence of the finite system size on the stress field in the vicinity of a crack tip
has been much studied in the mechanical context {Chona et al 1983, Sih 1973, Bowie
1973). This is a difficult problem which crucially depends on the precise geometry of
the structure and on the chosen boundary conditions. Specific mathematical techniques
have been developed, mainly in the mechanical context, for the analysis of the stress
field of an internal crack in a finite geometry (see Sih 1973 for a review). An electrical
version of this problem is obtained by considering a discrete resistor network in which
a thin row of insulating bonds is equivalent to a crack. As its mechanical counterpart,
the resistor network is described by a Laplacian field but offers two main simplifications:
the field is scalar instead of being tensorial and its discrete nature facilitates the
numerical computation of the field.

In the present work, we have considered a particular crack configuration in such
a resistor network. It consists in a long thin row of insulating bonds oriented
perpendicular to the average current as shown in figure 1. Such a critical defect has

Figure 1. Single defect centred in a resistor network.
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been recently examined by Duxbury et al (1986, 1987a) and Li and Duxbury (1987)
in the context of the theory of breakdown in random networks. In order to estimate
the current enhancement at the tips of such a defect, they calculated the solution for
the current at the end of an elliptical defect in a continuous 2D conductor and obtained
the solution for the discrete model by integrating the current density over the lattice
spacing. On doing this, they found that, in two dimensions, the current at the tip of
a long defect of length n in a large system grows as¥

i~ 1+fm'? (1)
where f is a numerical factor (f~ 0.55 in a discrete network according to Kahng et al
1988).

This expression has been established in the limit of large n in an infinite system
(of size L/n—+0). Therefore, it is natural to ask about its range of validity since
experimental or numerical systems are finite. In the context of the random fuse model,
equation (1) has been used to predict the failure threshold in finite systems and for
finite crack configurations. Recently, Kahng et al (1988) reported a nurmerical simula-
tion of iy,(n) on a 91x91 discrete network and noticed that the square-root law was
not evident until large values of n {n>30). Due to possible crossover effects, they
questioned the utility of calculations based on this law for the range of network sizes
(L~100) used in numerical simulations.

For the purpose of clarifying the importance of finite size effects in resistor networks,
we have investigated the current at the tip of such long defects as a function of their
length n and of the network size L. Two finite-size effects are competing in finite
networks. For small defect lengths n, the finiteness of n is the dominant effect (effect
1). In this regime, the current i,;, converges slowly towards the asymptotic square-root
law (1) as the defect length n increases. Analysis of the defect finite size provides
corrections going as n~'/2, This result stays valid as long as the condition n<« L is
fulfilled. As n increases, the finite size of the network comes into play (effect 2) and
rapidly supersedes effect 1. In this case, it can be shown that the leading correction
to the asymptotic expression (1) is proportional to (n/L)* due to the dipole nature of
the defect, as seen from the border of the system. In numerical simulations, effect 2
is clearly indicated by the divergence of the two curves iy, ;(n) and iy, v(n) in current-
and voltage-biased networks respectively. The fact that this network size effect is
numerically observed for values of n/ L as small as 0.10 as discussed later, has important
consequences. For small or moderate size networks, say L <100, either effect 1 or
effect 2 affects i;;, whatever the length of the defect. The apparent square-root law that
can be observed in some ranges of defect lengths in such networks cannot really be
identified with the asymptotic law predicted in (1). In fact, very large networks are
needed to observe the true asymptotic square root law predicted by Duxbury et al
(1987b).

The outline of the paper is as follows. In section 2, numerical simulations of i,
as a function of n and L are presented in order to exhibit the size effects which influence
the tip current. In section 3, the corrections to the asymptotic law (1) are predicted

T In order to obtain the square-root dependence, Duxbury et al (1986, 1987a), following a suggestion of
Stephen, have solved the analogous continuum problem of an elliptic defect of length n and width b, By
solving the Laplace equation in this system with the boundary condition 8 V/3¢ = 0 (¢ is the normal coordinate
on the ellipse) leads to a current density at the ellipse tip j,;, ~jn. Taking b = h, where h is the lattice mesh
size of the corresponding discrete problem and integrating j,, from the ellipse tip to a distance equal to h
from this tip yields the square-root singularity. However, to our knowledge, no direct derivation exists for
the discrete lattice.
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within a finite-size scaling analysis and compared with numerical simulations. An
approximate expression for i, in a finite network is given. The results are summarized
in section 4.

2. Numerical results

The system under study is a 2D square resistor network of size L where L is the number
of columns and lines (figure 1). Each bond has the same resistance R. A constant
current I or a constant voltage difference V is applied between the two busbars located
at the top and at the bottom of the network. In the following, the currents (or voltages)
are normalized to the current I, =1I/L (or voltage V,=V/L) which passes through
each vertical bond in the uniform network. The defect we consider is a row of insulating
bonds oriented perpendicular to the average current and centred in the network. In
order to obtain the current i;, which flows through the critical bonds at the end of the
defect, we have performed calculations of the distribution of currents in the network.
To solve the Kirchhoff’s equations, we used the conjugate-gradient method, the conver-
gence criterion being satisfied when the residual vector was less than 107" (Duxbury
et al 1987b).

In the following, both current-biased and voltage-biased networks are considered.
In an infinite network, they would give the same behaviour for i;, as a function of the
defect length n. In a finite network, the same behaviour is also expected in both cases
for small values of n, i.e. as long as the defect does not significantly modify the total
conductance of the network. However, as the defect length becomes sufficiently large
compared to the size L of the network, the tip current exhibits a stronger enhancement
in the current-biased network than in the voltage-biased network. Hence, the curves
iip.1(n) and iy, v(n) are identical for small n but diverge at sufficiently large values of
n. The value of n for which the two curves diverge indicates the minimum defect length
for which the finiteness of the system length L must be considered (effect 2).

The tip current i, is displayed in figure 2 as a function of the defect length n for
network sizes increasing from L =30 up to L =300. Figures 2(a) and 2(b) correspond
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Figure 2. Double logarithmic plot of the tip current i;,, in current-biased networks
(a) and i,y in voltage-biased networks (b) as a function of the defect length n:
(A) L=30, (B) L=350, (C} L=100, (D) L=180, (E) L=300. The tip current j, v in the
L =300 voltage-biased network has been displayed in (a) as a broken line for comparison
with §p ;.
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to current-biased and voltage-biased networks respectively. The double logarithmic
plot that we have used enables one to compare the behaviour of i, with the straight
line corresponding to the square-root law. As discussed above, note the different
behaviours of iy, in the current and voltage-biased cases. The voltage-biased curve
iyp,v corresponding to the largest network (L =300) has been plotted as a broken curve
in figure 2(a) for comparison with the corresponding current-biased curve iy, ;. The
two curves diverge for values of n=n* where n*(L =300) ~ 40. Thus, the size of the
network affects i;, for rather low values of n (n*/L ~ 13%). This value, which is found
to also hold for the smaller lattices we have investigated, indicates that very large
networks are needed to verify the asymptotic form of i;,(n). For example, in the
numerical simulation of i;,(n) on a 91 x91 discrete network, Kahng et al (1988) found
that the square-root law was not ‘evident’ until a value larger than n~ 30. With the
above criterion, this value n ~ 30 is already larger than the crossover value n*(L=91) ~
10. As a consequence, Kahng et al were right to question the validity of (1) in their

finite-size network. As discussed later, the apparent numerical confirmation of the

square root law for some ranges of defect lengths in small networks can be traced

back to a subtle compensation between finite defect and finite system size effects.

Noticeable finite-size effects persists even for the largest system we have considered

(L =300, i.e. ~180 000 resistors). In fact, the logarithmic representation of i, in figure

2 is not sufficient to obtain conclusive results about the asymptotic behaviour of i;,%.

A more precise analysis of the numerical data can be obtained by displaying (figure

3) the slope a(n) of the logarithmic curves shown in figure 2. This slope corresponds
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Figure 3. Local effective exponent a(n) for current-biased (a) and voltage-biased networks
(b) as a function of the defect length n: (A) L=30, (B) L=150, (C) L=100, (D) L=180,
(E) L=300. The curve corresponding to the L =300 voltage-biased network has been
displayed in (a) as a broken curve for comparison with the current-biased networks.

T Figure 3 in Kahng et al (1988) reports on the same logarithmic representation as we have used, the current
enhancement i, v — 1 instead of &, \ as a function of the defect length for a 91 x91 network. Therefore,
the displayed curve is somewhat different from our curves, especially for the small values of n. It is worth
pointing out that in this logarithmic representation, voltage-biased curves of the current enhancement i;, v — 1
seem to better approach the square-root law than the current-biased curves, in contrast with the discussion
of our data in figure 2. This fact demonstrates that the logarithmic representation of i, which seems natural
for verifying the square-root law can be misleading. Significantly larger networks than the ones we have
considered, would provide unambiguous conclusions about i, in this representation.
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to the local effective power describing iy, i.e. itip(n)OCn“"’). Figures 3(a) and 3(b)
correspond to the current-biased and voltage-biased networks respectively. Three
regimes can be identified at small, intermediate and large values of n respectively. For
small values of n (regime A), a(n) increases rapidly starting from the initial value
a(3)~0.37. In this regime, the behaviour of i, is dominated by the finite defect length
effect (effect 1). For the large values of n (regime C), the behaviour of i, is dominated
by the finite size of the network (effect 2). For current-biased networks figure 3(a),
iyp.; increases rapidly with the defect length . For the voltage-biased case figure 3(b)),
the effect of the finite size of the network is more complicated. In fact, the effective
power ay(n) starts decreasing before the fast increase at the largest values of n. Finally,
regime B corresponds to the transition range between regimes A and C. In this range,
both effects 1 and 2 are competing but should vanish when L- . This is the range
of defect lengths where it is possible to observe the asymptotic square-root law by
verifying that a(n)- 0.5 when L increases.

The interest of this representation is to clearly exhibit the interplay between the
three regimes. First, a careful comparison between figures 3(a) and 3(b) shows that
the current-biased curves and the corresponding voltage-biased curves diverge for the
defect length n*~ L/10. Therefore, effect 2 affects i;, over 90% of the defect length
range. Because of the wide range of regime C, regimes A and B spread over a very
small defect length range, especially in small networks. In fact, the range of regime B
is so small in the L =30 and L =50 networks that it is not possible to distinguish any
tendency for a(n) to saturate toward the value 0.5. This tendency timidly shows up
inthe L =100 network and is more clearly observed inthe L = 180 and L = 300 networks.
These results corroborate our previous statement: in the range of defect lengths where
a square-root law is observed in small or moderate size networks (say L <100), both
effects 1 and 2 are still noticeably competing.

To summarize this section, the above numerical data have illustrated the importance
of the size effects. Therefore, in the moderate size networks usually considered in
experiments or numerical simulations, it would be useful to know the first finite-size
correcting terms when using (1). The next section will be devoted to a more detailed
account of these corrections.

3. Finite-size effect corrections

Clearly, the finite-size effects are still noticeable in our networks. Using (1) in a
significant and practical range of defect lengths would involve systems of huge sizes
(L>10"), a challenge out of usual computing abilities. Hence, one needs to take the
size effects corrections to (1) into account for systems having reasonable sizes. As
previously discussed, it is convenient to distinguish:

(i) the case where n« L for which the finiteness of n is the dominant effect (effect
1);

(ii) the regime where n is no longer small compared with L (in fact, the criterion
found numerically gives n/ L= 0.10), for which i, contains additional correction terms
steming from the finite value of n/L (effect 2).

t Only even values of the defect length have been computed in our numerical simulations (n=2,4,...).
Hence, the slopes a(n) displayed in figure 3 are defined for odd values of n according to a(n)=
log(i;p[2p +2)/i;,[2p])/10g(2) where n=2p+1,p=1,2....



3596 C Vanneste, A Gilabert and D Sornette

3.1. Case of a finite defect in an infinite system (n< L)

In the absence of a direct theoretical treatment for the discrete lattice problem, we
will use the formula developed for defects in a continuous system. Then, we apply
Duxbury et al’s procedure of integrating the continuum result over the lattice spacing
(1) in order to obtain formula for the discrete lattice case. The continuous system
considered by Duxbury ef al is an elliptic defect of length a and width b in the limit
a/b- o where b is chosen equal to the lattice mesh size. Here, we consider another
continuous system, namely a crack in a two-dimensional foil for which the classical
results found in the literature (Jackson 1975) allow us to predict not only the leading
term for i, but also size-effect corrections. In particular, the relationship between the
square-root law (1) for the current at the tip of a defect in a discrete system and the
nature of the singularity in the corresponding continuum system is clearly exhibited.

Consider the electrical problem of a continuous two-dimensional foil with a ‘thin
crack’ of length 1 perpendicular to the electric field at infinity. In the neighbourhood
of a crack tip, the electric field and thus the current density can be expressed by a
series of terms such as

j(r &) =joKi(Dr™" f Ay sin{(k+1)6/2)(r/ )" ()

where j, is the current density very far from the defect. The crack is lying along the
positive x axis (the left tip of the crack is at the origin) and (r, @) are the polar
coordinates. This expression (2) is a straightforward transcription of the method
described in Jackson (1975). Adapted to our boundary conditions, we state that the
component of the electric field normal to the crack tips must vanish (j, (r, ¢ =0 and
27)=0).

The so-called ‘current intensity factor’ K;(I) is given by

K (I)y=(=D)'"? (3)

This development is valid for small r/] ratio. Sufficiently near the tip, j(r, ¢) is given
by the first leading term

jn ¢)=A0j0K,(l)r'l/2 sin{¢/2}. (4)

Note the close relationship between the square root dependence of the current intensity
factor, the r~'/? singularityt and the square-root law (1) for the current at the tip of
a defect in the discrete system.

The r~'/? singularity of the stress field near the crack tip is important in the
mechanical context. The stress intensity factor K; (/) is generally defined by the singular
dependence of the stress as one approaches within a distance r from the crack tip.
Similar expressions to (2) and (4) exist for the stress field with a ‘stress intensity factor’
(Ergodan 1983) whose value is exactly given by (3).

Following Duxbury et al (1987b) and Li and Duxbury (1987), one can estimate
the current in the bond at the tip of the long defect of length / in the corresponding

* The square root singularity r™'/? of the electric (or stress) field at the tip of a crack is a special case of

the general problem of a defect having the shape of an edge with opening angle 6. In this case, the r'/2
singularity is replaced by a #''~"/® singularity with an exponent 1 — /6 which is continuously dependent
on the edge angle 6. The ‘thin crack’ then corresponds to 6 = 27 which recovers the exponent 1.
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discrete lattice by integrating the current density j(r, ¢ = m) given by (2) over the lattice
bond spacing h, i.e. from r=0to r=h:

Iﬁp=f’j(r,¢=w>dr (5)

Q
= I{a,(I/h)"*+a,+ax(I/h)""*+.. }
or
izip=Itip/IO=aonl//2+al+azn_l/2+.... (6)

Here, n=1/h and a,, a,, a, ... are constants determined from the boundary conditions.
I,=j,h is the current per bond at infinity or in the undeteriorated system. We note
that all coefficients a,,,—, with m=1, ...+ 0 are proportional to sin{m¢} and are thus
predicted to vanish exactly for ¢ = 7. In particular, a, =0. In the following, we will
verify this prediction.

Equation (6) recovers the result of Duxbury et al (1986, 1987a) and Li and . :uxbury
(1987), i.e. iy, ~ ayn'’? for large values of n. Furthermore, it provides the form of the
leading correction given by a,n” ">

Equation (6) can be compared with the numerical values of i, discussed in section
2. This comparison is not easy as it can only be made in regime A where effect 2 due
to the finite size of the network is negligible. From the discussion in section 2, regime
A spreads over an interval of defect lengths [1; n,] where n, is smaller than L/10. In
practice, it is not possible to separate effects (1) and (2) in the L =30, L =50 networks
and one finds a very small value, n,~7, in the L =100 network. Thus, one needs to
consider rather extended networks such as our L=180 and L =300 networks. The
comparison was made between (6) truncated to its three leading terms shown in (6),
and the numerical values of i, in the L =300 network. The fit, which could only be
obtained for defect lengths n =20, provides a,=0.81+0.01, a,=0.00£0.05 and a,=
0.51+0.02. The smallness of the defect length interval stresses again the necessity to
work with large systems in order to clearly separate effects 1 and 2. The value
a,=0.00=0.05 provides a first valuable test of our fit since we expect a, to vanish
exactly. Comparison between the numerical curves of iy, for the L=2300 network
(figure 2) and (6) where the above values a,, a, and a, have been used, is displayed

Slope 1
%
" //? |
] 4 o

1 0 10°? 103
n

Figure 4. Comparison between the numerical values of i;p (full curves) and (6) (dots).
(A) L=30,(B) L=150,(C) L=100, (D) L=180, (E) L=2300.
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in figure 4. In this logarithmic representation, the agreement is good up to the values
of n where the current-biased and voltage-biased curves diverge (n ~ 40). The agreement
can be checked to be also good up to n =20 when using the more sensitive effective
power representation of figure 3.

The above values of a,, a, and a, can also be checked from the numerical values
of iy, in an infinite lattice computed by using the lattice Green function for monopole
sources placed along the defect bonds in the unaltered network (Duxbury et al 1987b).
Performing a least-squares fit over the interval n =[1; 225] between these values of i,
and the two-term expansion i, = agn'/*+a,n”"? provides a,=0.8076 and a, = 0.4965,
in good agreement with the values we found in the L =300 networkft.

To summarize the results of this section, a reasonable approximation of i, for
n=L/10 in a network of size L is given by:

iy~ aon' >+ an”"? N

where a;~ 0.8 and a,~0.5.

The range of validity n =< L/10 imposes stringent conditions on the size of a finite
network in order to observe the leading scaling behaviour a,n'/?. Let us assume that
the first correction a,n~'/? can be neglected. For instance, let us choose a,n™"?/ i, < 5%
which is a very loose condition. One finds n = 12 and thereby, L= 120. For a,n™"/?/ fip =
1%, one would find L= 600.

3.2, Case of a finite defect in a finite system

As stated before, the influence of the finite system size on the stress field in the vicinity
of a crack tip has been much studied in the mechanical context (Chona et al 1983,
Sih 1973, Bowie 1973). For instance, Bowie (1973), using the so-called ‘modified
mapping-collocation’ technique, has been able to give the dependence of the stress
intensity factor K,(!) as a function of I/L for a crack in an arbitrary rectangular
geometry. For the particular case of a square geometry and fixed external stress
(corresponding to the current-biased resistor network), he finds

I/L 0.040 0.100 0.200 0.400 0.500 0.667 0.741 0.800
K.(D/(#D)"* 100 1.01 1.06 122 133 1.60 178 2.00

Note that for values of the ratio I/L as small as 0.1-0.2, there are small but already
noticeable corrections to the stress enhancement factor. This //L ratio is indeed in
good agreement with the numerical estimation (n/L~0.10) found in our discrete
resistor networks.

More specifically, it can be shown (Sih 1973) that the effect of a finite system size
L is to introduce corrections to the stress intensity factor, which are function of the
sole ratio I/ L (Bowie 1973, Bui 1977). In particular, the leading correction is propor-

tional to (I/ L)’ in the limit of small //L%, a result which has been illustrated for a
t The formula iy, = apn'/?+an~"/? where a,=0.8076 and a, =0.4965 is accurate to a few per cent for
n <10, less than one per cent for 10<n <50 and less than a part in a thousand for n > 50. Better fits can
be obtained if higher-order terms are considered in (6). In such cases, the values of a, and a, are slightly
modified (a,~0.8066, a,~ 0.5876, a,~ ~0.200,...). However, the accuracy gained by such higher-order
expansions is rapidly superseded by the corrections due to effect 2 in finite lattices.

% For instance, let us quote the expression (Ergodan 1983, Bowie 1973) of the stress intensity factor for a
crack of length n in a plate of width L and length H > 3L, submitted to a constant tensile stress at the two
ends of the plate: K;(n)=(mn)"?[cos{mn/4L}]™"? {1-0.006(n/L)>+0.015(n/L)*} which, for small n/L,
gives the form of the leading correction to expression (4): K, (n) = (m7n)"*{1+[(72/64)~0.006](n/L)*+.. .}.
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particular goemetry by Bui (1977). Such a (I/L)* correction comes from the dipole
r~? dependence of the stress (or current) field at distances r from the crack much
larger than its size L This result can be checked for the tip current in the discrete
resistor network, by separating the (n/L) corrections from the finite defect length
corrections given by (6). In particular, it is possible to show that the numerical values
of iy, ,/(agn'*+a,n""'?) are reasonably well approximated by the expression {1—
(n/L)*}™"? for the current-biased networks. This result corroborates the predicted
(n/L)? form of the leading correction in the limit n/L— 0 and leads to the following
expression for iy, ;:

bips ~ (aon'/* +an ™3/ (1= (n/ L)} /2, (8)

We emphasize that (8) is only a rough approximation of the numerical values of
iip,1. However, the first advantage of this expression is the absence of adjustable
parameters in the (n/L)* correcting term. Moreover, the approximation is reasonably
good as demonstrated in figure 5 where (8) is compared with the numerical values of
iips. Therefore, we suggest using (8) in the practical cases where i, does not need to
be known with a very large accuracy (<1%).

A similar result can be obtained for voltage-biased networks by using

itip,V/ bip,1 = a(n/L) 9)

where o(n/ L) is the conductance of the network. In a continuous system, the conduct-
ance is actually function of the sole ratio 1/L. In a discrete resistor network, there
exists a slight additional dependence on the system size L which can be neglected in

a first approximation. It is possible to show that the numerical values of o(N/L) are
reasonably fitted by

a(n/L)y~1—b(n/L)? (10)

valid for n/L <0.9 and where b~ 0.73. For small values of n/ L, this expression could
be put on a firm basis in terms of dipole effects. However, as one wants to use it in a
rather extended range of defect lengths, we emphasize that equation (10) is only the
result of an approximate fit of the numerical values of o(n/L). The predicted values
for i;, v given by (8), (9) and (10) are compared with the actual numerical values in
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Figure 5. Comparison between the numerical values of i, (full curves) and (8) (dots).
(A) L=30, (B) L=50, (C} L=100, (D) L=180 and (E) L =300.
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Figure 6. Comparison between the numerical values of i,y (full curves) and the
approximate values given by (8), (9) and (10) (dots). (A) L=30, (B) L:=50, (C) /=100,
(D) L=180 and (E) L=300.

figure 6. Given the new errors introduced by (10), the fit is not as good as the fit of
iip,; but can be sufficient in many practical cases.

In fact, the above results are quite general and concern any system described by
the same equations (Laplacian fields). From the previous study, we have shown that
in order to reduce the error on iy, to a value less than say, 2%, one needs to consider
the defect length range n/L <10. Above this value, corrections due the finite size of
the system must be considered. This result is closely related to that obtained by Chona
et al (1983) on the spatial extension r;, of the singularity-dominated zone around a
crack charged according to different schemes. The value of r,;, was obtained from
systematic series expansion up to the sixth order of the stress field in conjunction with
photo-elastic fracture patterns. Depending upon the nature of the boundary stresses,
it was shown that r,;,/ L must be less than 0.2-0.1% in order that the stress calculated
from the leading singularity be equal to the true stress to within less than a 2% error.
The concept of a ‘singularity-dominated zone’ around a crack tip which is widespread
in the literature must thus be taken with care in real specimens with finite dimensions.
Our results, obtained in an electrical system, provide another illustration of these effects.

4. Conclusion

We have presented numerical results showing that noticeable finite-size corrections
apply to the leading singularity occuring at the crack tip in a two-dimensional electrical
problem. In particular, one must be very cautious when a square-root law governing
the tip current is observed. For network sizes usually considered in numerical simula-
tions (L < 100), this apparent asymptotic regime is still noticeably influenced by defect
and network size effect corrections. This type of result is quite general and also applies
in the mechanical context. The underlying explanation stems from the long range
nature of the solutions of the Laplacian equation AV =0. Hence, before identifying a
singularity in a finite specimen, one should quantify carefully the finite-size corrections.
This is important for the understanding of the statistical properties in breakdown
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problems of percolation models for instance and also in order to formulate reliable
criteria for standard fracture testing (Chona et al 1983).
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